Normal hemodynamic parameters

Learn the normal hemodynamic values off by heart 💖

Parameter Equation Normal Range
Arterial Blood Pressure (BP) Systolic (SBP) 90 - 140 mmHg
  Diastolic (DBP) 60 - 90 mmHg
Mean Arterial Pressure (MAP) (SBP + 2 x DBP)/3 70 - 105 mmHg
Systolic Pressure Variation (SPV) (SPmax-SPmin) <5 mmHg unlikely to be preload responsive
>5mmHg likely to be preload responsive
Pulse Pressure Variation (PPV) (PPmax-PPmin)/[(PPmax + PPmin)/2] x100 <10% unlikely to be preload responsive
>13-15% likely to be preload responsive
Stroke Volume Variation (SVV) (SVmax-SVmin)/[(SVmax + SVmin)/2] x100 <10% unlikely to be preload responsive
>13-15% likely to be preload responsive
  = averaged over 10 sec. of BP data updated every 4 beats
Right Atrial Pressure (RAP)   2 - 6 mmHg
Right Ventricular Pressure (RVP) Systolic (RVSP) 15 - 25 mmHg
  Diastolic (RVDP) 0 - 8 mmHg
Pulmonary Artery Pressure (PAP) Systolic (PASP) 15 - 25 mmHg
  Diastolic (PADP) 8 - 15 mmHg
Mean Pulmonary Artery Pressure (MPAP) [PASP + (2 x PADP)]/3 10 - 20 mmHg
Pulmonary Artery Wedge Pressure (PAWP)   6 - 12 mmHg
Left Atrial Pressure (LAP)   6 - 12 mmHg
Cardiac Output (CO) HR x SV/1000 4.0 - 8.0 l/min
Cardiac Index (CI) CO/BSA 2.5 - 4.0 l/min/m2
Stroke Volume (SV) CO/HR x 1000 60 - 100 ml/beat
Stroke Volume Index (SVI) CI/HR x 1000 33 - 47 ml/m2/beat
Systemic Vascular Resistance (SVR) 80 x (MAP - RAP)/CO 800 - 1200 dynes · sec/cm5
Systemic Vascular Resistance Index (SVRI) 80 x (MAP - RAP)/CI 1970 - 2390 dynes · sec/cm5/m2
Pulmonary Vascular Resistance (PVR) 80 x (MPAP - PAWP)/CO <250 dynes · sec/cm5
Pulmonary Vascular Resistance Index (PVRI) 80 x (MPAP - PAWP)/CI 255 - 285 dynes · sec/cm5/m2

Hemodynamic Parameters - Adult

Parameter Equation Normal Range
Left Ventricular Stroke Work (LVSW) SV x (MAP - PAWP) x 0.0136 58 - 104 gm-m/beat
Left Ventricular Stroke Work Index (LVSWI) SVI x (MAP - PAWP) x 0.0136 50 - 62 gm-m/m2/beat
Right Ventricular Stroke Work (RVSW) SV x (MPAP - RAP) x 0.0136 8 - 16 gm-m/beat
Right Ventricular Stroke Work Index (RVSWI) SVI x (MPAP - RAP) x 0.0136 5 - 10 gm-m/m2/beat
Coronary Artery Perfusion Pressure (CPP) Diastolic BP - PAWP 60 - 80 mmHg
Right Ventricular End-Diastolic Volume (RVEDV) SV/EF 100 - 160 ml
Right Ventricular End-Systolic Volume (RVESV) EDV - SV 50 - 100 ml
Right Ventricular Ejection Fraction (RVEF) SV/EDV 40 - 60%

Oxygenation Parameters - Adult

Parameter Equation Normal Range
Partial Pressure of Arterial Oxygen (PaO2)   80 - 100 mmHg
Partial Pressure of Arterial CO2(PaCO2)   35 - 45 mmHg
Bicarbonate (HCO3)   22 - 28 mEg/1
pH   7.38 - 7.42
Arterial Oxygen Saturation (SaO2)   95 - 100%
Mixed Venous Saturation (SvO2)   60 - 80%
Arterial Oxygen Content (CaO2) (0.0138 x Hgb x SaO2) + (0.0031 x PaO2) 17 - 20 ml/dl
Venous Oxygen Content (CvO2) (0.0138 x Hgb x SvO2) + (0.0031 x PvO2) 12 - 15 ml/dl
A-V Oxygen Content Difference
(C(a-v)O2)
CaO2 - CvO2 4 - 6 ml/dl
Oxygen Delivery (DO2) CaO2 x CO x 10 950-1150 ml/min
Oxygen Delivery Index (DO2I) CaO2 x CI x 10 500 - 600 ml/min/m2
Oxygen Consumption (VO2) (C(a - v)O2) x CO x 10 200 -250 ml/min
Oxygen Consumption Index (VO2I) (C(a - v)O2 x CI x 10 120 - 160 ml/min/m2
Oxygen Extraction Ratio (O2ER) [(CaO2-CvO2)/CaO2] x 100 22 - 30%
Oxygen Extraction Index (O2EI) [SaO2 - SvO2)/SaO2 x 100 20 - 25%

 

Have you read the evidence on the benefits of hemodynamic monitoring?

Latest hemodynamic monitoring blogs

Read and subscribe today...

What is continuous non-invasive arterial pressure (CNAP)?

This is a clinical education blog focused on non invasive hemodynamic monitoring.  It explains how continuous noninvasive arterial pressure (CNAP) works and the clinical evidence that supports it.

Not All Arteries Are Created Equal: Traveling Down the Arterial Tree

This is a clinical education blog on why we calibrate non invasive finger cuffs to ensure the most reliable data is generated for the patient.  Listen to the audio by clicking play below... Why

Hemodynamics: Are you getting the whole picture?

This is a blog about the factors that influence hemodynamics and the relationship between pressure and flow.  It discusses some common misconceptions about pressure and suggests evidence-based